Military vehicles are typically armored, hence the open surface area for heat rejection is limited. Hence, the cooling parasitic load for a given heat rejection can be considerably higher and important to consider upfront in the system design. Since PEMFCs operate at low temp, the required cooling flow is larger to account for the smaller delta temperature to the air. This research aims to address the combined problem of optimal sizing of the lithium ion battery and PEM Fuel Cell stack along with development of the scalable power split strategy for small a PackBot robot. We will apply scalable physics-based models of the fuel cell stack and balance of plant that includes a realistic and scalable parasitic load from cooling integrated with existing scalable models of the lithium ion battery. This model allows the combined optimization that captures the dominant trends relevant to component sizing and system performance. The baseline optimal performance is assessed using dynamic programming for a reduced order model, by assuming a static cooling load required to maintain the stack at the operating temperature with peak efficiency. Pseudo-spectral optimization methods, which enable fast computation even for larger number of states in the model is then used to consider the additional control of the cooling system. For scaling of the battery in the hybrid system we can use a modular approach, adding cells in parallel and series. If the fuel cell operates always with net power above the peak efficiency point, a simple rule based strategy can nearly recover the optimal fuel consumption achieved with dynamic programming. However, for stack operation at powers near and below the peak eff point the simple rule based strategy performs almost 20% worse than the optimal.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Cooling Parasitic Considerations for Optimal Sizing and Power Split Strategy for Military Robot Powered by Hydrogen Fuel Cells


    Weitere Titelangaben:

    Sae Technical Papers


    Beteiligte:

    Kongress:

    WCX World Congress Experience ; 2018



    Erscheinungsdatum :

    2018-04-03




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    In-wheel motor drive system for military vehicles powered by hydrogen fuel power

    SHIN YONG CHEOL | Europäisches Patentamt | 2023

    Freier Zugriff

    COOLING ARCHITECTURE FOR HYDROGEN FUEL CELL-POWERED AIRCRAFT

    TEJPAL RITISH | Europäisches Patentamt | 2022

    Freier Zugriff

    COOLING ARCHITECTURE FOR HYDROGEN FUEL CELL-POWERED AIRCRAFT

    TEJPAL RITISH | Europäisches Patentamt | 2022

    Freier Zugriff

    COOLING ARCHITECTURE FOR HYDROGEN FUEL CELL-POWERED AIRCRAFT

    TEJPAL RITISH | Europäisches Patentamt | 2022

    Freier Zugriff

    COOLING ARCHITECTURE FOR HYDROGEN FUEL CELL-POWERED AIRCRAFT

    TEJPAL RITISH | Europäisches Patentamt | 2024

    Freier Zugriff