A novel application in the field of Life Cycle Assessment is presented that investigates optimal vehicle retirement timing and design life. This study integrates Life Cycle Energy Analysis (LCEA) with Dynamic Replacement Modeling and quantifies the energy tradeoffs between operating an older vehicle versus replacing it with a new more energy efficient model. The decision to keep or replace a vehicle to minimizes life cycle energy consumption is influenced by several factors including vehicle production energy, current vehicle's fuel economy and its deterioration with age, the improvement in fuel economy technology of new model vehicles and annual vehicle miles traveled (VMT). Model simulations explore vehicle replacement under incremental improvements in vehicle technology and leapfrog technology improvements such as with the PNGV (Partnership for a New Generation of Vehicles). Preliminary results indicate that the optimal life of a 1995 mid-sized vehicle for baseline deterioration and annual VMT of 11,200 miles spans from 7 to 13 years based on a 26 year time horizon with two or three vehicle replacements. For this case, the cumulative life cycle energy ranged from 2381 to 1794 GJ.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Optimizing Vehicle Life Using Life Cycle Energy Analysis and Dynamic Replacement Modeling


    Weitere Titelangaben:

    Sae Technical Papers


    Beteiligte:

    Kongress:

    Total Life Cycle Conference and Exposition ; 2000



    Erscheinungsdatum :

    26.04.2000




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    Optimizing Vehicle Life Using Life Cycle Energy Analysis and Dynamic Replacement Modeling

    Kim, H. C. / Keoleian, G. A. / Spatari, S. et al. | British Library Conference Proceedings | 2000


    Optimizing vehicle life using life cycle energy analysis and dynamic replacement modeling

    Kim,H.C. / Keoleian,G.A. / Spatari,S. et al. | Kraftfahrwesen | 2000


    Electric vehicle life cycle analysis

    Cohn, Russell S. (Russell Sanford) | DSpace@MIT | 1994

    Freier Zugriff


    Life cycle cost modeling for railway vehicle

    Jun, H.K. / Kim, J.H. | IEEE | 2007