Many studies have shown that the addition of oxygen-bearing compounds to diesel fuel can significantly reduce particulate emissions. To assist in the evaluation of the environmental performance of diesel-fuel oxygenates, we have implemented a suite of diagnostic models for simulating the transport of compounds released to air, water, and soils/groundwater as well as regional landscapes. As a means of studying the comparative performance of DBM and TGME, we conducted a series of simulations for selected environmental media. Benzene and methyl tertiary butyl ether (MTBE) were also addressed because they represent benchmark fuel-related compounds that have been the subject of extensive environmental measurements and modeling. The simulations showed that DBM and TGME are less mobile than MTBE in soil because of reduced vapor-phase transport and increased retention on soil particles. The key distinction between these two oxygenates is that DBM is predicted to have a greater potential than TGME for aerobic biodegradation, based on chemical structure.
Comparative Environmental Performance of Two Diesel-Fuel Oxygenates: Dibutyl Maleate (DBM) and Tripropylene Glycol Monomethyl Ether (TGME)
Sae Technical Papers
Future Car Congress ; 2002
03.06.2002
Aufsatz (Konferenz)
Englisch
British Library Conference Proceedings | 2005
|Environmental performance of diesel-fuel synthetic oxygenates: maleates and carbonates
Kraftfahrwesen | 2008
|