Thick wire reinforced braided hydraulic hose is modeled as an equivalent thin-shell laminate consisting of alternate unidirectional sublayers. Stacking sequence and helical orientation of the sublayers are described both by a symmetric and an overlapping laminate. A knock-down factor, wire misalignment, is also applied to each model. Gough-Tangorra micromechanics is used in conjunction with a linear finite element code to solve for stress-strain behavior of the symmetric laminate throughout the hydraulic pressure range from an unloaded state to minimum burst conditions. Classical laminate theory is developed and applied to the overlapping model since the finite element code is not directly applicable.Both models exhibit satisfactory agreement with experimental data and output from a set of theoretical nonlinear equations. In addition, computed hose axial stiffnesses agree with those measured from static dead-weight loaded hose sections. Calculated wire tension distribution between layers follow all trends exhibited by the predictive equations. At elevated pressures near hose instability, (rapid length increase at constant pressure) wire tensions are found to be considerably less than the minimum wire breakage tension.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Comparative Stress-Strain Analysis of Bidirectional Braided Hydraulic Hose Approximated by Unidirectional Laminate Theory


    Weitere Titelangaben:

    Sae Technical Papers


    Beteiligte:
    Breig, W. F. (Autor:in)

    Kongress:

    International Off-Highway & Powerplant Congress & Exposition ; 1992



    Erscheinungsdatum :

    01.09.1992




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch





    Finite element analysis of spiral hose utilizing laminate theory

    Breig,W.F. / Dayco Technical Center,Springfield,US | Kraftfahrwesen | 1991



    HYDRAULIC HOSE

    SAE Technical Papers | 1968


    Hydraulic Hose

    SAE Technical Papers | 2016