Theoretical analysis1 has predicted that the driving factors in flow stagnation of a radiator panel in a pumped fluid loop system are: Historically, manned spaceflight has used high viscosity, non-toxic glycol/water mix working fluids for pumped fluid loop radiators where panel fluid outlet temperatures are in a range where flow stagnation due to viscosity increases becomes a serious issue. Radiator panel flow stagnation occurs when fluid stops flowing through some of the panel fluid tubes, effectively reducing radiator size and heat rejection capability. If this phenomenon can be adequately understood, stagnation can be used advantageously as system heat rejection needs vary.The focus of this paper is to evaluate the effect of radiator design parameters on the panel fluid tube flow stagnation point in a man-rated pumped fluid loop system with a goal of maximizing radiator panel heat rejection while increasing fluid system stability and stagnation predictability.Using a Thermal Desktop® (www.crtech.com) model of a radiator panel with fluid tubes, the sensitivity of the radiator fluid stagnation point to uniform changes in sink temperature, fluid inlet temperature to the radiator panel, radiator panel thickness, fluid tube internal diameter, fluid tube length, and working fluid viscosity is evaluated.
Analytical Investigation of Flow Stagnation in a Pumped Fluid Loop Radiator
Sae Technical Papers
International Conference On Environmental Systems ; 2007
09.07.2007
Aufsatz (Konferenz)
Englisch
Analytical Investigation of Flow Stagnation in a Pumped Fluid Loop Radiator
British Library Conference Proceedings | 2007
|British Library Conference Proceedings | 2008
|Effect of Non‐Uniform Inlet Temperature on Flow Stagnation in a Pumped Fluid Tube Radiator
American Institute of Physics | 2008
|Effect of Non-Uniform Inlet Temperature on Flow Stagnation in a Pumped Fluid Tube Radiator
British Library Conference Proceedings | 2008
|