The results of the numerical characterization of the hydrodynamics of Soybean Oil Methyl Ester (SME) fuel spray using a spray model based on the moments of the droplet size distribution function are presented.A heat and mass transfer model based on the droplet surface-areaaveraged temperature is implemented in the spray model and the effects on the SME fuel spray tip penetration and droplet sizes at different ambient gas temperature (300 K to 450 K) and fuel temperature (300 K to 360 K) values are evaluated.The results indicate that the SME fuel spray tip penetration values are insensitive to variations to the fuel temperature values but increase with increasing ambient gas temperature values. The droplet size values increase with increasing SME fuel temperature. The fuel vapor mass fraction is predicted to be highest at the spray core, with the axial velocity values of the droplets increasing with increases in the SME fuel spray temperature.These results agree with those obtained from previously published experimental data and numerical results from a KIVA-3V code, though the magnitudes of the changes observed from the model are not as pronounced.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Numerical Characterization of Biodiesel Fuel Spray under Different Ambient and Fuel Temperature Conditions Using a Moments Spray Model


    Weitere Titelangaben:

    Sae Technical Papers


    Beteiligte:

    Kongress:

    SAE 2016 World Congress and Exhibition ; 2016



    Erscheinungsdatum :

    2016-04-05




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    Outwardly Opening Hollow-Cone Diesel Spray Characterization under Different Ambient Conditions

    Montanaro, Alessandro / Beatrice, Carlo / Allocca, Luigi et al. | SAE Technical Papers | 2018




    Characteristics of Impinging Spray and Corresponding Fuel Film under Different Injection and Ambient Pressure

    Hung, David L.S. / Xiao, Di / Xu, Min et al. | SAE Technical Papers | 2019


    Spray and Combustion of Diesel Fuel under Simulated Cold-Start Conditions at Various Ambient Temperatures

    Bae, Choongsik / Park, Hyunwook / Shin, Jugon | SAE Technical Papers | 2017