As predictive capabilities advance and human-model fidelity increases, so must validation of such predictions and models. However, subjective validation is sufficient only as an initial indicator; thorough, systematic studies must be conducted as well. Thus, the purpose of this paper is to validate postures that are determined using single-objective optimization (SOO) and multi-objective optimization (MOO), as applied to the virtual human Santos™. In addition, a general methodology and tools for posture-prediction validation are presented. We find that using MOO provides improvement over SOO, and the results are realistic from both a subjective and objective perspective.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Validation Methodology Development for Predicted Posture


    Weitere Titelangaben:

    Sae Technical Papers


    Beteiligte:
    Harrison, Chad (Autor:in) / Yang, Jingzhou (Autor:in) / Abdel-Malek, Karim (Autor:in) / Rahmatalla, Salam (Autor:in) / Marler, Timothy (Autor:in)

    Kongress:

    2007 Digital Human Modeling Conference ; 2007



    Erscheinungsdatum :

    12.06.2007




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    Validation methodology development for predicted posture

    Marler,T. / Yang,J. / Rahmatalla,S. et al. | Kraftfahrwesen | 2006


    Validation Methodology Development for Predicted Posture

    Marler, T. / Yang, J. / Rahmatalla, S. et al. | British Library Conference Proceedings | 2007


    Development and validation of structural models of human posture

    Barauskas, R. / Krušinskiene, R. | BASE | 2006

    Freier Zugriff

    Development and validation of structural models of human posture

    Barauskas, R. / Krušinskiene, R. | BASE | 2006

    Freier Zugriff

    A Novel Methodology for Human Posture Recognition Using CVPI

    Pujita, S. / Ravi, Sunitha / Prathyusha, K. et al. | IEEE | 2021