Abstract A hybrid maximum power point tracking method has been proposed for the photovoltaic system using a stochastic evolutionary search and a deterministic hill climbing algorithm. The proposed approach employs the particle swarm optimizer (PSO) to solve a dynamic optimization problem related to the control task in a PV system. The position of the best particle is updated by the hill climbing algorithm, and the position of the rest of the particles by the classic PSO rule. The presented method uses the re-randomization mechanism, which places five consecutive particles randomly, but in specified intervals. This mechanism helps track the maximum power point under partially shaded conditions.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Hybrid MPPT Algorithm for PV Systems Under Partially Shaded Conditions Using a Stochastic Evolutionary Search and a Deterministic Hill Climbing


    Beteiligte:

    Erschienen in:

    Erscheinungsdatum :

    2017




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Print


    Sprache :

    Englisch


    Klassifikation :

    BKL:    53.35 Stromrichter, Transformatoren / 53.35$jStromrichter$jTransformatoren / 53.33 Elektrische Maschinen und Antriebe / 53.33$jElektrische Maschinen und Antriebe



    Unified MPPT controller for partially shaded panels in a photovoltaic array

    Sridhar, R. / Jeevananthan, S. / Dash, S. S. et al. | British Library Online Contents | 2014




    Effect of Measurement Noise and Bias on Hill-Climbing MPPT Algorithms

    Al-Atrash, Hussam / Batarseh, Issa / Rustom, Khalid | IEEE | 2010


    Maximum Power Output from a Solar PV Array Under Partially Shaded Conditions

    Sahu, Himanshu Sekhar / Mishra, Mahesh K. | IEEE | 2018