Abstract Previous studies of geosynchronous orbits indicated that the equinoctial precession (EP) of the Earth affects the long-term behavior of geosynchronous satellites for missions exceeding ten years. However, these studies did not include the lunisolar gravitation and tesseral resonance. In the present study, a model that includes the latter effects is developed. In particular, it is shown that the EP affects motion in the vicinity of the stable and unstable geostationary points. This effect is pronounced in the vicinity of the unstable points, shifting the satellite away from the geosynchronous altitude. Moreover, it is shown that secular inclination growth on time scales of 10–20 years is induced by the EP. This requires additional stationkeeping maneuvers that may increase the overall fuel usage by about 1%. An additional contribution of the present study is an analysis of EP-perturbed orbits with free inclination drift. An optimal initial node location, minimizing the inclination drift, is calculated while taking into account the effect of the EP. It is shown that the classical optimal initial node locations are changed due to the effect of the EP. A maneuvering program in the presence of EP is developed. It is shown that the timing and number of stationkeeping maneuvers is affected by the EP. The models developed herein utilize non-singular orbital elements.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Semianalytical Study of Geosynchronous Orbits About a Precessing Oblate Earth Under Lunisolar Gravitation and Tesseral Resonance


    Beteiligte:
    Belyanin, Sofia (Autor:in) / Gurfil, Pini (Autor:in)


    Erscheinungsdatum :

    2009




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Print


    Sprache :

    Englisch



    Klassifikation :

    BKL:    55.60 Raumfahrttechnik
    Lokalklassifikation TIB:    770/7040