Abstract Despite the widespread use of synthetic data in discrete choice analysis, little is known about how the methodology used to generate synthetic datasets influences the properties of parameter estimates and the validity of results based on these estimates. That is, there are two potential sources of biases when using synthetic discrete choice data: (1) bias due to the method used to generate the dataset; and, (2) bias due to parameter estimation. The primary objective of this study is to examine bias due to the underlying data generation method. This study compares three methods for generating synthetic datasets and uses design of experiments and analysis of variance methods to investigate the ability to recover estimates for “true” logsum parameters for nested logit models. The method that uses nested logit probabilities to generate the chosen alternative results in unbiased parameter estimates. The method that is based on Gumbel error component approximations reveals that while the error components themselves are unbiased, subtle empirical identification problems can arise when these error components are combined with synthetically generated utility functions. The method that is based on normal error component approximations reveals that all logsum coefficients are biased upwards; the bias dramatically increases for those nests that have a low choice frequency and is most pronounced for those nests with high correlations among alternatives. Based on the results of the analysis, several recommendations for the generation of synthetic datasets for discrete choice analyses are provided.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Generation of synthetic datasets for discrete choice analysis


    Beteiligte:
    Garrow, Laurie A. (Autor:in) / Bodea, Tudor D. (Autor:in) / Lee, Misuk (Autor:in)

    Erschienen in:

    Transportation ; 37 , 2 ; 183-202


    Erscheinungsdatum :

    2009




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Print


    Sprache :

    Englisch



    Klassifikation :

    BKL:    55.80 Verkehrswesen, Transportwesen: Allgemeines / 74.75 Verkehrsplanung, Verkehrspolitik
    Lokalklassifikation TIB:    535/7000



    Generation of synthetic datasets for discrete choice analysis

    Garrow, Laurie A. / Bodea, Tudor D. / Lee, Misuk | Online Contents | 2009




    Synthetic Datasets for Autonomous Driving: A Survey

    Song, Zhihang / He, Zimin / Li, Xingyu et al. | IEEE | 2024


    Discrete Choice Analysis of Travel Behaviour

    Michal Šimeček | DOAJ | 2019

    Freier Zugriff