Abstract Planar orbits of three-dimensional restricted circular three-body problem are considered as a special case of three-dimensional orbits, and the second-order monodromy matrices M (in coordinate z and velocity vz) are calculated for them. Semi-trace s of matrix M determines vertical stability of an orbit. If |s| ≤ 1, then transformation of the subspace (z, vz) in the neighborhood of solution for the period is reduced to deformation and a rotation through angle φ, cosφ = s. If the angle ϕ can be rationally expressed through 2π,φ = 2π·p/q, where p and q are integer, then a planar orbit generates the families of three-dimensional periodic solutions that have a period larger by a factor of q (second kind Poincareé periodic solutions). Directions of continuation in the subspace (z, vz) are determined by matrix M. If |s| < 1, we have two new families, while only one exists at resonances 1: 1 (s = 1) and 2: 1 (s = −1). In the course of motion along the family of three-dimensional periodic solutions, a transition is possible from one family of planar solutions to another one, sometimes previously unknown family of planar solutions.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Families of periodic solutions in three-dimensional restricted three-body problem


    Beteiligte:

    Erschienen in:

    Cosmic Research ; 47 , 1 ; 53-67


    Erscheinungsdatum :

    2009




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Print


    Sprache :

    Englisch


    Schlagwörter :

    Klassifikation :

    BKL:    50.93 Weltraumforschung / 39.00 Astronomie: Allgemeines / 55.60 Raumfahrttechnik
    Lokalklassifikation TIB:    770/3520/8000