Abstract The problem of a rendezvous in the central Newtonian gravitational field is considered for a controlled spacecraft and an uncontrollable spacecraft moving along an elliptic Keplerian orbit. For solving the problem, two variants of the equations of motion for the spacecraft center of mass are used, written in rotating coordinate systems and using quaternion variables to describe the orientations of these coordinate systems. In the first variant of the equations of motion a quaternion variable characterizes the orientation of an instantaneous orbit of the spacecraft and the spacecraft location in the orbit, while in the second variant it characterizes the orientation of the plane of the spacecraft instantaneous orbit and the location of a generalized pericenter in the orbit. The quaternion variable used in the second variant of the equations of motion is a quaternion osculating element of the spacecraft orbit. The problem of a rendezvous of two spacecraft is formulated as a problem of optimal control by the motion of the center of mass of a controlled spacecraft with a movable right end of the trajectory, and it is solved on the basis of Pontryagin's maximum principle.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    The Use of Quaternions in the Optimal Control Problems of Motion of the Center of Mass of a Spacecraft in a Newtonian Gravitational Field: II


    Beteiligte:

    Erschienen in:

    Erscheinungsdatum :

    2003




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Print


    Sprache :

    Englisch


    Schlagwörter :

    Klassifikation :

    BKL:    55.60 Raumfahrttechnik / 39.00 Astronomie: Allgemeines / 50.93 Weltraumforschung
    Lokalklassifikation TIB:    770/3520/8000