This work presents the implementation and study of the quadratic constitutive relation nonlinear eddy-viscosity model with representative compressor application, for which the corner separation has been poorly predicted with the widely used linear Boussinesq eddy-viscosity model. With the introduction of the Reynolds stress anisotropy, the secondary flow of the second kind and its effect on the corner flow can be well captured and this results in greatly improved prediction of pressure coefficient, total pressure loss coefficient and the corner separation size. Without the quadratic constitutive relation model, the separation size and loss are generally over-estimated. The mechanism of the improvement is studied using both the vortex dynamics and the momentum equation. It is proved that quadratic constitutive relation model consumes low CPU time and provides much improved compressor corner separation prediction without worsening the convergence property.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Improved compressor corner separation prediction using the quadratic constitutive relation


    Beteiligte:


    Erscheinungsdatum :

    2017




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Print


    Sprache :

    Englisch



    Klassifikation :

    BKL:    52.50 Energietechnik: Allgemeines / 52.30 Strömungskraftmaschinen, Turbomaschinen / 52.30 / 52.50
    Lokalklassifikation TIB:    275/5345/5365/5500





    Supersonic Corner Flow Predictions using the Quadratic Constitutive Relation

    Leger, Timothy J. / Bisek, Nicholas J. / Poggie, Jonathan | AIAA | 2015


    Supersonic Corner Flow Predictions Using the Quadratic Constitutive Relation

    Leger, Timothy / Bisek, Nicholas / Poggie, Jonathan | AIAA | 2016


    Capabilities and Limitations of the Quadratic Constitutive Relation in Corner Flow Prediction

    Sabnis, Kshitij / Spalart, Philippe R. / Galbraith, Daniel et al. | AIAA | 2021