A systematic analysis of the role played by several physical mechanisms in the longitudinal stability of a tethered kite is presented. A simple model, which artificially constrains the pitch motion of the kite and approximates the tether by a massless and rigid bar, is improved progressively to include the kite pitch motion as well as the tether inertia, flexibility, wind load, and elasticity. The models are presented as compact sets of ordinary differential equations without algebraic constraints, which are explicitly eliminated by making an extensive use of Lagrangian mechanics. The contributions of each physical mechanism on kite stability are investigated separately, and a tradeoff between the complexity and computational costs of the models against their accuracy and reliability is carried out. The wind load on the tether is identified as a key effect stabilizing the steady state of the kites. The optimal bridle design and tether length selections to compute the kite ceiling are discussed.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Modeling and Stability Analysis of Tethered Kites at High Altitudes




    Erscheinungsdatum :

    2017




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Print


    Sprache :

    Englisch



    Klassifikation :

    BKL:    55.54 Flugführung
    Lokalklassifikation TIB:    770/7040




    Modeling and Stability Analysis of Tethered Kites at High Altitudes

    Pastor-Rodríguez, A. / Sánchez-Arriaga, G. / Sanjurjo-Rivo, M. | AIAA | 2017



    Automatic Flight Control of Tethered Kites for Power Generation

    Jehle, Claudius | BASE | 2013

    Freier Zugriff