GNSS signal classification to LOS and NLOS signals is of great value for conventional ranging-based and shadow matching algorithms. The most common attribute for performing this classification is the signal strength. Alas, such classification is often insufficient, in particular, in urban environments. In this paper, we present a novel approach for LOS/NLOS classification utilizing supervised machine learning algorithms. Provided with a sufficiently large labeled training set, the proposed approach is able to predict with high certainty (>85 percent) the satellites' visibility status in dense urban regions. This achievement was possible due to the vast raw measurements supplied for the algorithm and using sophisticated feature-selection techniques. Copyright © 2017 Institute of Navigation.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Robust GNSS LOS/NLOS Signal Classifier



    Erschienen in:

    Navigation ; 63 , 4


    Erscheinungsdatum :

    2016




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Print


    Sprache :

    Englisch



    Klassifikation :

    BKL:    53.84 Ortungstechnik, Radartechnik / 55.86 Schiffsverkehr, Schifffahrt / 55.54 Flugführung
    Lokalklassifikation TIB:    770/5680/7035



    A robust gnss los/nlos signal classifier

    Yozevitch, Roi / Moshe, Boaz Ben / Weissman, Ayal | British Library Online Contents | 2016


    GNSS NLOS SIGNAL MODELING AND QUANTIFICATION METHOD IN RAILWAY URBAN CANYON ENVIRONMENT

    Jiang, Shuxian / Lu, Debiao / Cai, Baigen | British Library Conference Proceedings | 2019



    3D LiDAR Aided GNSS NLOS Mitigation in Urban Canyons

    Wen, Weisong Weisong / Hsu, Li-Ta | IEEE | 2022


    A Framework for Graphical GNSS Multipath and NLOS Mitigation

    Xu, Penghui / Zhang, Guohao / Zhong, Yihan et al. | IEEE | 2024