In the most evolved designs, it is common practice to expose engine components to main annulus air temperatures exceeding the thermal material limit in order to increase the overall performance and to minimise the engine specific fuel consumption. To prevent overheating of the materials and thus the reduction of the component life, an internal flow system is required to cool the critical engine parts and to protect them. This paper shows a practical application and extension of the methodology developed during the research programme MAGPI. Extensive use was made of FEA and CFD modelling techniques to understand the thermo-mechanical behaviour of a dedicated turbine stator well rig, due to the interaction of cooling air supply with the main annulus. Previous work based on the same rig showed difficulties in matching predictions to thermocouple measurements near the rim seal gap. In this investigation, two different types of turbine stator well geometries were analysed, where further use was made of existing measurements of hot running seal clearances in the rig. The structural deflections were applied to the existing models to evaluate the impact in flow interactions and heat transfer. Additionally to the already evaluated test cases without net ingestion, cases simulating engine deterioration with net ingestion were validated against the available test data, also taking into account cold and hot running seal clearances. 3D CFD simulations were conducted using the commercial solver FLUENT coupled to the in-house FEA tool SC03 to validate against available test data of the dedicated rig.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Structural Deflection's Impact on Turbine Stator Well Heat Transfer




    Erscheinungsdatum :

    2016




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Print


    Sprache :

    Englisch



    Klassifikation :

    BKL:    52.52 Thermische Energieerzeugung, Wärmetechnik / 52.30 Strömungskraftmaschinen, Turbomaschinen / 52.52 / 52.30