The present paper analyzes the effect of passive flow control (PFC) with respect to the retrofitting on small horizontal axis wind turbines (sHAWT). We conducted extensive wind tunnel studies on an high performance low Reynolds airfoil using different PFC elements, i.e. vortex generators (VGs) and Gurney flaps. QBlade, an open source Blade Element Momentum (BEM) code, is used to study the retrofitting potential of a simulated small wind turbine. The turbine design is presented and discussed. The simulations include the data and polars gained from the experiments and give further insight into the effects of PFC on sHAWT. Therefore several different blades were simulated using several variations of VG positions. This paper discusses their influence on the turbine performance. The authors focus especially on the start-up performance as well as achieving increased power output at lower wind speeds. The vortex generators reduce the risk of laminar separation and enhance the lift in some configurations by more than 40% at low Reynolds numbers.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Potential of Retrofit Passive Flow Control for Small Horizontal Axis Wind Turbines




    Erscheinungsdatum :

    2016




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Print


    Sprache :

    Englisch



    Klassifikation :

    BKL:    52.30 / 52.52 / 52.52 Thermische Energieerzeugung, Wärmetechnik / 52.30 Strömungskraftmaschinen, Turbomaschinen




    Passive Pitch Control of Small Horizontal Axis Wind Turbines

    Hertel, Jonas / Nygaard, Tor / Duque, Earl | AIAA | 2004


    Evaluating the Aerodynamic Performance of Small Horizontal Axis Wind Turbines

    Wallace, Brian D. / McLaughlin, Dennis K. / Stewart, Susan W. | AIAA | 2015