The results of stereo particle-image-velocimetry (PIV) measurements are presented in this paper to gain further insight into the wake of a finite width Gurney flap. It is attached to an FX 63-137 airfoil which is known for a very good performance at low Reynolds numbers and is therefore used for small wind turbines and is most appropriate for tests in the low speed wind tunnel presented in this study. The Gurney flaps are a promising concept for load control on wind turbines but can have adverse side effects, e.g., shedding of additional vortices. The investigation focuses on frequencies and velocity distributions in the wake as well as on the structure of the induced tip vortices. Phase-averaged velocity fields are derived of a proper-orthogonal-decomposition (POD) based on the stereo PIV measurements. Additional hot-wire measurements were conducted to analyze the fluctuations downstream of the finite width Gurney flaps. Experiments indicate a general tip vortex structure that is independent from flap length but altered by the periodic shedding downstream of the flap. The influence of Gurney flaps on a small wind turbine is investigated by simulating a small 40 kW turbine in QBlade. They can serve as power control without the need of an active pitch system and the starting performance is additionally improved. The application of Gurney flaps implies tonal frequencies in the wake of the blade. Simulation results are used to estimate the resulting frequencies. However, the solution of Gurney flaps is a good candidate for large-scale wind turbine implementation as well. A FAST simulation of the NREL 5 MW turbine is used to generate realistic time series of the lift. The estimations of control capabilities predict a reduction in the standard deviation of the lift of up to 65%. Therefore, finite width Gurney flaps are promising to extend the lifetime of future wind turbines.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Wake Analysis of a Finite Width Gurney Flap




    Erscheinungsdatum :

    2016




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Print


    Sprache :

    Englisch



    Klassifikation :

    BKL:    52.52 Thermische Energieerzeugung, Wärmetechnik / 52.30 Strömungskraftmaschinen, Turbomaschinen / 52.52 / 52.30



    Gurney flap

    BEKIRCAN SUAT / BREWER PAUL | Europäisches Patentamt | 2020

    Freier Zugriff

    GURNEY FLAP

    BEKIRCAN SUAT / BREWER PAUL | Europäisches Patentamt | 2020

    Freier Zugriff

    Effect of Gurney Flap on Unsteady Wake Vortex

    Tim Lee / Lawrence Lee | AIAA | 2007


    Gurney flap

    BEKIRCAN SUAT / BREWER PAUL | Europäisches Patentamt | 2019

    Freier Zugriff

    GURNEY FLAP

    BEKIRCAN SUAT / BREWER PAUL | Europäisches Patentamt | 2017

    Freier Zugriff