Public health surveillance programs in the U.S. are undergoing landmark changes with the availability of electronic health records and advancements in information technology. Injury narratives gathered from hospital records, workers compensation claims or national surveys can be very useful for identifying antecedents to injury or emerging risks. However, classifying narratives manually can become prohibitive for large datasets. The purpose of this study was to develop a human-machine system that could be relatively easily tailored to routinely and accurately classify injury narratives from large administrative databases such as workers compensation. We used a semi-automated approach based on two Naïve Bayesian algorithms to classify 15,000 workers compensation narratives into two-digit Bureau of Labor Statistics (BLS) event (leading to injury) codes. Narratives were filtered out for manual review if the algorithms disagreed or made weak predictions. This approach resulted in an overall accuracy of 87%, with consistently high positive predictive values across all two-digit BLS event categories including the very small categories (e.g., exposure to noise, needle sticks). The Naïve Bayes algorithms were able to identify and accurately machine code most narratives leaving only 32% (4853) for manual review. This strategy substantially reduces the need for resources compared with manual review alone.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A practical tool for public health surveillance: Semi-automated coding of short injury narratives from large administrative databases using Naïve Bayes algorithms



    Erschienen in:

    Erscheinungsdatum :

    2015




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Print


    Sprache :

    Englisch



    Klassifikation :

    BKL:    44.80 / 55.84 Straßenverkehr / 55.24 / 44.80 Unfallmedizin, Notfallmedizin / 55.84 / 55.24 Fahrzeugführung, Fahrtechnik




    Instance Cloning Local Naive Bayes

    Jiang, L. / Zhang, H. / Su, J. et al. | British Library Conference Proceedings | 2005


    Improving Naive Bayes for Classification

    Jiang, L. / Cai, Z. / Wang, D. | British Library Online Contents | 2010


    Prediction of Slope Stability using Naive Bayes Classifier

    Feng, Xianda / Li, Shuchen / Yuan, Chao et al. | Online Contents | 2018


    Prediction of Slope Stability using Naive Bayes Classifier

    Feng, Xianda / Li, Shuchen / Yuan, Chao et al. | Springer Verlag | 2018