This article presents a reference adaptive Hermite fuzzy neural network controller for a synchronous reluctance motor. Although synchronous reluctance motors are mathematically and structurally simple, they perform poorly under dynamic modes of operation because certain parameters, such as the external load and non-linear friction, are difficult to control. The proposed adaptive Hermite fuzzy neural network controller overcomes this problem, as using the Hermite function instead of the conventional Gaussian function shortens the training time. Furthermore, the proposed adaptive Hermite fuzzy neural network controller uses an online self-tuning fuzzy neural network to estimate the system's lumped uncertainty. The estimation method involves a fuzzy controller with expert knowledge of the initial weight of the neural network. Finally, the Lyapunov stability theory and adaptive update law were applied to guarantee system convergence. In this article, the responsiveness of the adaptive Hermite fuzzy neural network controller and an adaptive reference sliding-mode controller is compared. The experimental results show that the adaptive Hermite fuzzy neural network controller markedly improved the system's lumped uncertainty and external load response.
Reference Model with an Adaptive Hermite Fuzzy Neural Network Controller for Tracking a Synchronous Reluctance Motor
Electric power components and systems ; 43 , 7 ; 770-780
2015
Aufsatz (Zeitschrift)
Englisch
Mathematical functions , non-linear control , Tracking control systems , adaptive fuzzy neural network , reference model , Lyapunov function , motor control , feedback control , Controllers , synchronous reluctance motor , intelligent control , Hermite function , Control systems , sliding-mode controller , Motors , Neural networks , Fuzzy logic
A Fuzzy Sliding-Mode Controller Design for a Synchronous Reluctance Motor Drive
Online Contents | 1996
|BASE | 2021
|Switched Reluctance Motor Control Via Fuzzy Adaptive Systems
British Library Online Contents | 1995
|Robust adaptive neural network control for switched reluctance motor drives
BASE | 2018
|