This article presents a reference adaptive Hermite fuzzy neural network controller for a synchronous reluctance motor. Although synchronous reluctance motors are mathematically and structurally simple, they perform poorly under dynamic modes of operation because certain parameters, such as the external load and non-linear friction, are difficult to control. The proposed adaptive Hermite fuzzy neural network controller overcomes this problem, as using the Hermite function instead of the conventional Gaussian function shortens the training time. Furthermore, the proposed adaptive Hermite fuzzy neural network controller uses an online self-tuning fuzzy neural network to estimate the system's lumped uncertainty. The estimation method involves a fuzzy controller with expert knowledge of the initial weight of the neural network. Finally, the Lyapunov stability theory and adaptive update law were applied to guarantee system convergence. In this article, the responsiveness of the adaptive Hermite fuzzy neural network controller and an adaptive reference sliding-mode controller is compared. The experimental results show that the adaptive Hermite fuzzy neural network controller markedly improved the system's lumped uncertainty and external load response.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Reference Model with an Adaptive Hermite Fuzzy Neural Network Controller for Tracking a Synchronous Reluctance Motor


    Beteiligte:

    Erschienen in:

    Erscheinungsdatum :

    2015




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Print


    Sprache :

    Englisch



    Klassifikation :

    BKL:    53.33 / 53.33 Elektrische Maschinen und Antriebe





    Artificial Neural Network-Based Gain-Scheduled State Feedback Speed Controller for Synchronous Reluctance Motor

    Tarczewski, Tomasz / Niewiara, Łukasz / Grzesiak, Lech M. | BASE | 2021

    Freier Zugriff

    Switched Reluctance Motor Control Via Fuzzy Adaptive Systems

    Reay, D. S. / Mirkazemi-Moud, M. / Green, T. C. et al. | British Library Online Contents | 1995


    Robust adaptive neural network control for switched reluctance motor drives

    Li, Cunhe / Wang, Guofeng / Li, Yan et al. | BASE | 2018

    Freier Zugriff