Heavy traffic axle load spectrum (ALS) is one of the key inputs for mechanistic-empirical analysis and design of pavement structures. Frequently, the entire ALS is aggregated into number of equivalent single axle loads or assumed to have constant contact area (CCA) or constant contact pressure. These characterisations affect the accuracy and computational performance of the pavement analysis. The objective of this study was to evaluate these characterisations based on predicted performances to rutting and fatigue cracking of several pavement structures subjected to ALS data collected from 12 bridge weigh in motion stations. The results indicated that for layers below the top 25 cm, all characterisations produced similar values of predicted rutting. However, for the top 25 cm, the methods differed in the predicted performances to rutting and fatigue cracking. Furthermore, an improvement to the CCA approach was proposed that enhanced the accuracy while maintaining the same level of computational performance.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Characterisation of heavy traffic axle load spectra for mechanistic-empirical pavement design applications



    Erschienen in:

    Erscheinungsdatum :

    2015




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Print


    Sprache :

    Englisch



    Klassifikation :

    BKL:    56.24 / 56.24 Straßenbau



    Axle Load Distribution for Mechanistic-Empirical Pavement Design

    Wang, Y. / Hancher, D. E. / Mahboub, K. | British Library Online Contents | 2007



    Axle Load Distribution for Mechanistic–Empirical Pavement Design in North Carolina

    Sayyady, Fatemeh / Stone, John R. / List, George F. et al. | Transportation Research Record | 2011


    Sensitivity of Axle Load Spectra in the Mechanistic–Empirical Pavement Design Guide for Washington State

    Li, Jianhua / Pierce, Linda M. / Hallenbeck, Mark E. et al. | Transportation Research Record | 2009