Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen


    Exportieren, teilen und zitieren



    Titel :

    Mitigating Overfitting in Interpretable Machine Learning Using Bayesian Methods


    Beteiligte:
    Nolan Strauss (Autor:in) / Hongsup Oh (Autor:in) / Geoffrey Bomarito (Autor:in) / Patrick Leser (Autor:in) / Jacob Hochhalter (Autor:in) / John Emery (Autor:in) / Joshua Robbins (Autor:in)

    Kongress:

    17th U.S. National Congress on Computational Mechanics (USNCCM17) ; 2023 ; Albuquerque, NM, US


    Medientyp :

    Sonstige


    Format :

    Keine Angabe


    Sprache :

    Englisch




    Mitigating Overfitting in Interpretable Machine Learning Using Bayesian Methods

    N. Strauss / H. Oh / G. Bomarito et al. | NTIS | 2023


    Overfitting Prevention in Accident Prediction Models: Bayesian Regularization of Artificial Neural Networks

    Fiorentini, Nicholas / Pellegrini, Diletta / Losa, Massimo | Transportation Research Record | 2022


    Teaching freight mode choice models new tricks using interpretable machine learning methods

    Xiaodan Xu / Hung-Chia Yang / Kyungsoo Jeong et al. | DOAJ | 2024

    Freier Zugriff

    Symmetrization and overfitting in probabilistic latent semantic analysis

    Leksin, V. A. | British Library Online Contents | 2009


    Accurate and Interpretable Bayesian MARS for Traffic Flow Prediction

    Xu, Yanyan / Kong, Qing-Jie / Klette, Reinhard et al. | IEEE | 2014