The existing database of transition measurements in hypersonic ground facilities has established that the onset of boundary layer transition over a circular cone at zero angle of attack shifts downstream as the nosetip bluntness is increased with respect to a sharp cone. However, this trend is reversed at sufficiently large values of the nosetip Reynolds number, so that the transition onset location eventually moves upstream with a further increase in nosetip bluntness. This transition reversal phenomenon, which cannot be explained on the basis of linear stability theory, was the focus of a collaborative investigation under the NATO STO group AVT-240 on Hypersonic Boundary-Layer Transition Prediction. The current paper provides an overview of that effort, which included wind tunnel measurements in three different facilities and theoretical analysis related to modal and nonmodal amplification of boundary layer disturbances. Because neither first and second-mode waves nor entropy-layer instabilities are found to be substantially amplified to initiate transition at large bluntness values, transient (i.e., nonmodal) disturbance growth has been investigated as the potential basis for a physics based model for the transition reversal phenomenon. Results of the transient growth analysis indicate that stationary disturbances that are initiated within the nosetip or in the vicinity of the juncture between the nosetip and the frustum can undergo relatively significant nonmodal amplification and that the maximum energy gain increases nonlinearly with the nose radius of the cone. This finding does not provide a definitive link between transient growth and the onset of transition, but it is qualitatively consistent with the experimental observations that frustum transition during the reversal regime was highly sensitive to wall roughness, and furthermore, was dominated by disturbances that originated near the nosetip. Furthermore, the present analysis shows significant nonmodal growth of traveling disturbances that peak within the entropy layer and could also play a role in the transition reversal phenomenon.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen


    Exportieren, teilen und zitieren



    Titel :

    Nose-Tip Bluntness Effects on Transition at Hypersonic Speeds


    Beteiligte:
    Pedro Paredes (Autor:in) / Meelan M Choudhari (Autor:in) / Fei Li (Autor:in) / Joseph S Jewell (Autor:in) / Roger L Kimmel (Autor:in) / Eric C Marineau (Autor:in) / Guillaume Grossir (Autor:in)


    Erscheinungsdatum :

    2018-11-30




    Medientyp :

    Preprint


    Format :

    Keine Angabe


    Sprache :

    Englisch




    Nose-Tip Bluntness Effects on Transition at Hypersonic Speeds

    Paredes, Pedro / Choudhari, Meelan M. / Li, Fei et al. | AIAA | 2018




    LINEAR STABILITY ANALYSIS OF NOSE BLUNTNESS EFFECTS ON HYPERSONIC BOUNDARY LAYER TRANSITION

    Lei, J. / Zhong, X. / American Institute of Aeronautics and Astronautics | British Library Conference Proceedings | 2010