The purpose of this assessment was to develop updates and new features for the NASA Copernicus Spacecraft Trajectory Design and Optimization analysis tool (version 5.0) for application to NASA programs and projects. These updates will significantly improve the ability to design and optimize complex trajectories over multiple trajectory phases; will allow the use of unique vehicle-specific guidance, control, and trajectory strategies and constraints; and the creation of an almost unlimited number of unique user-defined capabilities. The primary stakeholders for this assessment are the trajectory design and optimization analysts and engineers, and the chief engineers and project managers for existing programs, projects, and/or tasks that involve impulsive, finite burn, and/or continuous thrust trajectories (e.g., Sun, planet, comet, asteroid, halo orbit, Lagrange point, and distant retrograde orbit). The breadth of application spans the preliminary engineering and mission design concepts and optimization, to the development of candidate reference missions and integrated mission design for vehicle system design and operation, to the design and development of flight trajectories and associated propulsive maneuvers for real-time operations.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen


    Exportieren, teilen und zitieren



    Titel :

    Improvements to the Copernicus Trajectory Design and Optimization System for Complex Space Trajectories


    Beteiligte:

    Erscheinungsdatum :

    01.01.2019


    Medientyp :

    Report


    Format :

    Keine Angabe


    Sprache :

    Englisch




    Recent Improvements to the Copernicus Trajectory Design and Optimization System

    Williams, Jacob / Senent, Juan S. / Ocampo, Cesar et al. | NTRS | 2012


    Recent Improvements to the Copernicus Trajectory Design and Optimization System

    J. Williams / J. S. Senent / C. Ocampo et al. | NTIS | 2012


    Recent Improvements to the Copernicus Trajectory Design and Optimization System (AAS 12-236)

    Williams, J. / Senent, J.S. / Lee, D.E. et al. | British Library Conference Proceedings | 2012


    Copernicus Spacecraft Trajectory Design and Optimization Program

    Jacob Williams / Gerald L Condon | NTRS | 2020