A regeneratively-cooled nozzle for liquid rocket engine applications is a significant cost of the overall engine due to the complexities of manufacturing a large thin-walled structure that must operate in extreme temperature and pressure environments. NASA has been investigating and advancing methods for fabrication of liquid rocket engine channel wall nozzles to realize further cost and schedule improvements. The methods being evaluated are targeting increased scale required for current NASA and commercial space programs. Several advanced rapid fabrication methods are being investigated for forming of the inner liner, producing the coolant channels, closeout of the coolant channels, and fabrication of the manifolds. NASA Marshall Space Flight Center (MSFC) completed process development and subscale hot-fire testing of a series of these advanced fabrication channel wall nozzle technologies to gather performance data in a relevant environment. The primary fabrication technique being discussed in this paper is Laser Wire Deposition Closeout (LWDC). This process has been developed to significantly reduce time required for closeouts of regeneratively-cooled slotted liners. It allows for channel closeout to be formed in place in addition to the structural jacket without the need for channel fillers or complex tooling. Additional technologies were also tested as part of this program including water jet milling and arc-based additive manufacturing deposition. Each nozzle included different fabrication features, materials, and methods to demonstrate durability in a hot-fire environment. The results of design, fabrication and hot-fire testing performance is discussed in this paper.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen


    Exportieren, teilen und zitieren



    Titel :

    Channel Wall Nozzle Manufacturing and Hot-Fire Testing using a Laser Wire Deposition Closeout Technique for Liquid Rocket Engines


    Beteiligte:

    Kongress:

    AIAA Propulsion and Energy Forum ; 2018 ; Cincinnati, OH, United States


    Erscheinungsdatum :

    2018-07-09


    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Keine Angabe


    Sprache :

    Englisch