Nuclear Thermal Propulsion (NTP) has long been considered as a viable in-space transportation alternative for delivering crew and cargo to the Martian system. While technology development work in nuclear propulsion has continued over the year, general interest in NTP propulsion applications has historically been tied directly to the ebb and flow of interest in sending humans to explore Mars. As far back as the 1960’s, plans for NTP-based human Mars exploration have been proposed and periodically revisited having most recently been considered as part of NASA Design Reference Architecture (DRA) 5.0. NASA has been investigating human Mars exploration strategies tied to its current Journey to Mars for the past few years however, NTP has only recently been added into the set of alternatives under consideration for in-space propulsion under the Mars Study Capability (MSC) team, formerly the Evolvable Mars Campaign (EMC) team. The original charter of the EMC was to find viable human Mars exploration approaches that relied heavily on technology investment work already underway, specifically related to the development of large Solar Electric Propulsion (SEP) systems. The EMC team baselined several departures from traditional Mars exploration ground rules to enable these types of architectures. These ground rule changes included lower energy conjunction class trajectories with corresponding longer flight times, aggregation of mission elements in cis-Lunar space rather than Low Earth Orbit (LEO) and, in some cases, the pre-deployment of Earth return propulsion systems to Mars. As the MSC team continues to refine the in-space transportation trades, an NTP-based architecture that takes advantage of some of these ground rule departures is being introduced.
Revisiting Nuclear Thermal Propulsion for Human Mars Exploration
AIAA Space 2017 Conference ; 2017 ; Orlando, FL, United States
12.09.2017
Aufsatz (Konferenz)
Keine Angabe
Englisch