Autonomous systems are designed and deployed in different modeling paradigms. These environments focus on specific concepts in designing the system. We focus our effort in the use of cognitive architectures to design autonomous agents to collaborate with humans to accomplish tasks in a mission. Our research focuses on introducing formal assurance methods to verify the behavior of agents designed in Soar, by translating the agent to the formal verification environment Uppaal.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen


    Exportieren, teilen und zitieren



    Titel :

    Formal Assurance for Cognitive Architecture Based Autonomous Agent


    Beteiligte:

    Kongress:

    NASA Formal Methods (NFM 2017) Symposium ; 2017 ; Moffett Field, CA, United States


    Erscheinungsdatum :

    16.05.2017


    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Keine Angabe


    Sprache :

    Englisch




    Autonomous Separation Assurance with Deep Multi-Agent Reinforcement Learning

    Brittain, Marc W. / Yang, Xuxi / Wei, Peng | AIAA | 2021


    High Assurance Run-Time Monitoring Architecture for Autonomous Control

    Chou, Yi / Zutshi, Aditya / Clark, Matthew | AIAA | 2021


    HIGH ASSURANCE RUN-TIME MONITORING ARCHITECTURE FOR AUTONOMOUS CONTROL

    Chou, Yi / Zutshi, Aditya / Clark, Matthew | TIBKAT | 2021


    A Deep Multi-Agent Reinforcement Learning Approach to Autonomous Separation Assurance

    Brittain, Marc / Yang, Xuxi / Wei, Peng | ArXiv | 2020

    Freier Zugriff

    Cognitive Hybrid Control of an Autonomous Agent

    Lara, Bruno / Hermosillo, Jorge | IEEE | 2008