Next-generation space missions are currently constrained by existing spacecraft navigation systems which are not fully autonomous. These systems suffer from accumulated dead-reckoning errors and must therefore rely on periodic corrections provided by supplementary technologies that depend on line-of-sight signals from Earth, satellites, or other celestial bodies for absolute attitude and position determination, which can be spoofed, incorrectly identified, occluded, obscured, attenuated, or insufficiently available. These dead-reckoning errors originate in the ring laser gyros themselves, which constitute inertial measurement units. Increasing the time for standalone spacecraft navigation therefore requires fundamental improvements in gyroscope technologies. One promising solution to enhance gyro sensitivity is to place an anomalous dispersion or fast light material inside the gyro cavity. The fast light essentially provides a positive feedback to the gyro response, resulting in a larger measured beat frequency for a given rotation rate as shown in figure 1. Game Changing Development has been investing in this idea through the Fast Light Optical Gyros (FLOG) project, a collaborative effort which began in FY 2013 between NASA Marshall Space Flight Center (MSFC), the U.S. Army Aviation and Missile Research, Development, and Engineering Center (AMRDEC), and Northwestern University. MSFC and AMRDEC are working on the development of a passive FLOG (PFLOG), while Northwestern is developing an active FLOG (AFLOG). The project has demonstrated new benchmarks in the state of the art for scale factor sensitivity enhancement. Recent results show cavity scale factor enhancements of approx.100 for passive cavities.
Fast Light Optical Gyroscopes
01.01.2015
Sonstige
Keine Angabe
Englisch
A survey of optical gyroscopes
British Library Conference Proceedings | 1995
|Optical Fiber Gyroscopes for Automobiles
SAE Technical Papers | 1990
|Optical fiber gyroscopes for automobiles
Tema Archiv | 1990
|Double-Ring Resonator Optical Gyroscopes
British Library Online Contents | 2018
|Optical fiber gyroscopes for automobiles
Kraftfahrwesen | 1990
|