Risk to astronauts due to ionizing radiation exposure is a primary concern for missions beyond Low Earth Orbit (LEO) and will drive mission architecture requirements, mission timelines, and operational practices. Both galactic cosmic ray (GCR) and solar particle event (SPE) environments pose a risk to astronauts for missions beyond LEO. The GCR environment, which is made up of protons and heavier ions covering a broad energy spectrum, is ever present but varies in intensity with the solar cycle, while SPEs are sporadic events, consisting primarily of protons moving outward through the solar system from the sun. The GCR environment is more penetrating and is more difficult to shield than SPE environments, but lacks the intensity to induce acute effects. Large SPEs are rare, but they could result in a lethal dose, if adequate shielding is not provided. For short missions, radiation risk is dominated by the possibility of a large SPE. Longer missions also require planning for large SPEs; adequate shielding must be provided and operational constraints must allow astronauts to move quickly to shielded locations. The dominant risk for longer missions, however, is GCR exposure, which accumulates over time and can lead to late effects such as cancer. SPE exposure, even low level SPE exposure received in heavily shielded locations, will increase this risk. In addition to GCR and SPE environments, the lunar neutron albedo resulting mainly from the interaction of GCRs with regolith will also contribute to astronaut risk. Full mission exposure assessments were performed for proposed long duration lunar surface mission scenarios. In order to accomplish these assessments, radiation shielding models were developed for a proposed lunar habitat and rover. End-to-End mission exposure assessments were performed by first calculating exposure rates for locations in the habitat, rover, and during extra-vehicular activities (EVA). Subsequently, total mission exposures were evaluated for proposed timelines. A number of computational tools and mathematical models, which have been incorporated into NASA's On-Line Tool for the Assessment of Radiation In Space (OLTARIS), were used for this study. These tools include GCR and SPE environment models, human body models, and the HZETRN space radiation transport code, which is used to calculate the transport of the charged particles and neutrons through shielding materials and human tissue. Mission exposure results, assessed in terms of effective dose, are presented for proposed timelines and recommendations are made for improved astronaut shielding and safer operational practice.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen


    Exportieren, teilen und zitieren



    Titel :

    Full Mission Astronaut Radiation Exposure Assessments for Long Duration Lunar Surface Missions


    Beteiligte:

    Kongress:

    IEEE Aerospace Conference 2011 ; 2011 ; Big Sky, MT, United States


    Erscheinungsdatum :

    2010-01-01


    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Keine Angabe


    Sprache :

    Englisch


    Schlagwörter :


    Full Mission Astronaut Radiation Exposure Assessments for Long Duration Lunar Surface Missions

    Adamczyk, Anne / Clowdsley, Martha / Qualls, Garry et al. | NTRS | 2011



    A Multi-Purpose Astronaut Shower for Long-Duration Microgravity Missions

    Bernasconi, Marco C / Versteeg, Meindert / Zenger, Roland | AIAA | 2006


    Thermal Strategies for Long Duration Mobile Lunar Surface Missions

    Thornton, John / Whittaker, William / Jones, Heather et al. | AIAA | 2010


    THERMAL STRATEGIES FOR LONG DURATION MOBILE LUNAR SURFACE MISSIONS

    Thornton, J. / Whittaker, W. / Jones, H. et al. | British Library Conference Proceedings | 2010