The Advanced Resistive Exercise Device (ARED) has been developed at NASA Johnson Space Center, for the International Space Station (ISS) program. ARED is a multi-exercise, high-load resistive exercise device, designed for long duration, human space missions. ARED will enable astronauts to effectively maintain their muscle strength and bone mass in the micro-gravity environment more effectively than any other existing devices. ARED's resistance is provided via two, 20.3 cm (8 in) diameter vacuum cylinders, which provide a nearly constant resistance source. ARED also has a means to simulate the inertia that is felt during a 1-G exercise routine via the flywheel subassembly, which is directly tied to the motion of the ARED cylinders. ARED is scheduled to fly on flight ULF 2 to the ISS and will be located in Node 1. Presently, ARED is in the middle of its qualification and acceptance test program. An extensive testing program and engineering evaluation has increased the reliability of ARED by bringing potential design issues to light before flight production. Some of those design issues, resolutions, and design details will be discussed in this paper.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen


    Exportieren, teilen und zitieren



    Titel :

    Mechanism Development, Testing, and Lessons Learned for the Advanced Resistive Exercise Device


    Beteiligte:


    Erscheinungsdatum :

    2006-05-01


    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Keine Angabe


    Sprache :

    Englisch


    Schlagwörter :



    Lessons learned from pyrovalve testing

    Gadeby, James | AIAA | 1996


    Advanced Gust Management Systems - Lessons Learned and Perspectives

    Koenig, R. / Hahn, K.-U. / Winter, J. et al. | British Library Conference Proceedings | 1995



    EDSN Development Lessons Learned

    Chartres, James / Sanchez, Hugo S. / Hanson, John | NTRS | 2014