In-flight sensor fault detection and isolation (FDI) is critical to maintaining reliable engine operation during flight. The aircraft engine control system, which computes control commands on the basis of sensor measurements, operates the propulsion systems at the demanded conditions. Any undetected sensor faults, therefore, may cause the control system to drive the engine into an undesirable operating condition. It is critical to detect and isolate failed sensors as soon as possible so that such scenarios can be avoided. A challenging issue in developing reliable sensor FDI systems is to make them robust to changes in engine operating characteristics due to degradation with usage and other faults that can occur during flight. A sensor FDI system that cannot appropriately account for such scenarios may result in false alarms, missed detections, or misclassifications when such faults do occur. To address this issue, an enhanced bank of Kalman filters was developed, and its performance and robustness were demonstrated in a simulation environment. The bank of filters is composed of m + 1 Kalman filters, where m is the number of sensors being used by the control system and, thus, in need of monitoring. Each Kalman filter is designed on the basis of a unique fault hypothesis so that it will be able to maintain its performance if a particular fault scenario, hypothesized by that particular filter, takes place.
Enhanced Bank of Kalman Filters Developed and Demonstrated for In-Flight Aircraft Engine Sensor Fault Diagnostics
01.06.2005
Sonstige
Keine Angabe
Englisch
Hybrid Kalman Filter Approach for Aircraft Engine In-Flight Diagnostics: Sensor Fault Detection Case
Online Contents | 2007
|