Propellant densification has been identified as a critical technology in the development of a single stage to orbit (SSTO) launch vehicle. The densification of cryogenic propellant through sub-cooling allows more propellant to be stored in a given volume. This allows for higher propellant mass fractions than would otherwise be possible with conventional, normal boiling point, cryogenic fluids. One critical step in determining the viability of densified propellant technology for launch vehicles is to perform the sequential process necessary to load a propellant tank with densified propellants. This paper describes a test program that was conducted at NASA to demonstrate the ability to load densified LH2 into a sub-scale propellant rank. This work was done through a collaborative effort between NASA Lewis Research Center and the Lockheed Martin Michoud Space Systems (LMMSS). The tank, is made from composite materials similar to that to be used on X-33, is formed from two lobes with a center seprum. Test results are shown for data that was collected on filling the sub-scale tank with densified liquid hydrogen propellant that was produced at the NASA Plum Brook Station. Data is compared to analytical predictions.
Testing of Densified Liquid Hydrogen Stratification in a Scale Model Propellant Tank
Cryogenic Materials ; 1999 ; Montreal, Quebec, Canada
01.01.1999
Sonstige
Keine Angabe
Englisch
Densified Propellant Technology: Fueling Aerospace Vehicles in the New Era
British Library Conference Proceedings | 1997
|