Modular and hierarchical approach to supervised learning by artificial neural networks leads to neural networks more structured than neural networks in which all neurons fully interconnected. These networks utilize general feedforward flow of information and sparse recurrent connections to achieve dynamical effects. The modular organization, sparsity of modular units and connections, and fact that learning is much more circumscribed are all attractive features for designing neural-network hardware. Learning streamlined by imitating some aspects of biological neural networks.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen


    Exportieren, teilen und zitieren



    Titel :

    Modular, Hierarchical Learning By Artificial Neural Networks


    Beteiligte:

    Erschienen in:

    Erscheinungsdatum :

    01.03.1996



    Medientyp :

    Sonstige


    Format :

    Keine Angabe


    Sprache :

    Englisch


    Schlagwörter :



    Forecasting Train Arrival Time Using Modular Artificial Neural Networks

    Cho, H. / Rilett, L. R. / American Society of Civil Engineers | British Library Conference Proceedings | 2002


    Modular Artificial Neural Networks for Solving the Inverse Transportation Planning Problem

    Sadek, Adel W. / Mark, Charles | Transportation Research Record | 2003



    Artificial Neural Networks

    Jategaonkar, Ravindra V. | AIAA | 2015