Four tasks were completed in this period and results were published in AIAA papers. First, a Boltzmann-2D code, was developed and applied to compute MSFC-A2 nozzle/plume flow field. It solved the two-dimensional Boltzmann-BGK equation using the Finite Difference Discrete Ordinate (FDDO) numerical technique. The code was validated by experimental data for one-dimensional shock structure predictions, paper 95-2056. Successful results for nozzle/plume flow simulation using the developed Boltzmann-2D code were presented at the 1995 AIAA Aerospace Science Conference, paper 95-0627. Second, a computer code solving two-dimensional Burnett equations was developed and applied to low-density nozzle flow field calculation. Results were also published at the 1994 AIAA Thermophysics Conference, paper 94-2055. Third, the developed two-dimensional Burnett code was extended to compute axisymmetric flow field inside MSFC-A2 nozzle, paper 95-2008. The computed nozzle exit conditions are used as input data for Direct Simulation Monte Carlo (DSMC) plume calculation. Fourth, a DSMC code was modified to compute the exhausted plume near the nozzle exit and in the backflow region.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen


    Exportieren, teilen und zitieren



    Titel :

    Numerical investigations in the backflow region of a vacuum plume


    Beteiligte:

    Erscheinungsdatum :

    1995-08-01


    Medientyp :

    Report


    Format :

    Keine Angabe


    Sprache :

    Englisch