The accuracy of the numerical algorithm depends not only on the formal order of approximation but also on the distribution of grid points in the computational domain. Grid adaptation is a procedure which allows optimal grid redistribution as the solution progresses. It offers the prospect of accurate flow field simulations without the use of an excessively timely, computationally expensive, grid. Grid adaptive schemes are divided into two basic categories: differential and algebraic. The differential method is based on a variational approach where a function which contains a measure of grid smoothness, orthogonality and volume variation is minimized by using a variational principle. This approach provided a solid mathematical basis for the adaptive method, but the Euler-Lagrange equations must be solved in addition to the original governing equations. On the other hand, the algebraic method requires much less computational effort, but the grid may not be smooth. The algebraic techniques are based on devising an algorithm where the grid movement is governed by estimates of the local error in the numerical solution. This is achieved by requiring the points in the large error regions to attract other points and points in the low error region to repel other points. The development of a fast, efficient, and robust algebraic adaptive algorithm for structured flow simulation applications is presented. This development is accomplished in a three step process. The first step is to define an adaptive weighting mesh (distribution mesh) on the basis of the equidistribution law applied to the flow field solution. The second, and probably the most crucial step, is to redistribute grid points in the computational domain according to the aforementioned weighting mesh. The third and the last step is to reevaluate the flow property by an appropriate search/interpolate scheme at the new grid locations. The adaptive weighting mesh provides the information on the desired concentration of points to the grid redistribution scheme. The evaluation of the weighting mesh is accomplished by utilizing the weight function representing the solution variation and the equidistribution law. The selection of the weight function plays a key role in grid adaptation. A new weight function utilizing a properly weighted boolean sum of various flowfield characteristics is defined. The redistribution scheme is developed utilizing Non-Uniform Rational B-Splines (NURBS) representation. The application of NURBS representation results in a well distributed smooth grid by maintaining the fidelity of the geometry associated with boundary curves. Several algebraic methods are applied to smooth and/or nearly orthogonalize the grid lines. An elliptic solver is utilized to smooth the grid lines if there are grid crossings. Various computational examples of practical interest are presented to demonstrate the success of these methods.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen


    Exportieren, teilen und zitieren



    Titel :

    Structured adaptive grid generation using algebraic methods


    Beteiligte:
    Yang, Jiann-Cherng (Autor:in) / Soni, Bharat K. (Autor:in) / Roger, R. P. (Autor:in) / Chan, Stephen C. (Autor:in)


    Erscheinungsdatum :

    1993-07-01


    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Keine Angabe


    Sprache :

    Englisch


    Schlagwörter :


    A grid spacing control technique for algebraic grid generation methods

    SMITH, R. / KUDLINSKI, R. / EVERTON, E. | AIAA | 1982




    Structured grid generation with PATRAN

    THOMAS, MATTHEW / BACHE, GEORGE / BLUMENTHAL, ROBERT | AIAA | 1990


    Algebraic grid generation about wing-fuselage bodies

    Smith, R.E. / Kudlinski, R. A. / Everton, E. L. et al. | NTRS | 1987