The simulation of runoff from a Himalayan Glacier basin using an Artificial Neural Network (ANN) is presented. The performance of the ANN model is found to be superior to the Energy Balance Model and the Multiple Regression model. The RMS Error is used as the figure of merit for judging the performance of the three models, and the RMS Error for the ANN model is the latest of the three models. The ANN is faster in learning and exhibits excellent system generalization characteristics.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen


    Exportieren, teilen und zitieren



    Titel :

    Application of artificial neural networks in hydrological modeling: A case study of runoff simulation of a Himalayan glacier basin


    Beteiligte:
    Buch, A. M. (Autor:in) / Narain, A. (Autor:in) / Pandey, P. C. (Autor:in)


    Erscheinungsdatum :

    01.05.1994


    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Keine Angabe


    Sprache :

    Englisch


    Schlagwörter :


    Prediction of Runoff Using Artificial Neural Networks

    Vivekanandan, N. | HENRY – Bundesanstalt für Wasserbau (BAW) | 2010

    Freier Zugriff


    Mathematical Modeling of Solute Runoff from Forested Basin

    Yoshida, H. / Tamura, T. / Hashino, M. | British Library Online Contents | 1998


    Applications of Artificial Neural Networks to Pavement Prediction Modeling: A Case Study

    Lee, Ying-Haur / Ker, Hsiang-Wei / Liu, Yao-Bin | ASCE | 2014


    Generalising urban runoff and street network density relationship: A hydrological and remote-sensing case study in Israel

    Goldshleger, N. / Karnibad, L. / Shoshany, M. et al. | British Library Online Contents | 2012