The effects of three different droplet heating models on the vaporization history and internal structure of turbulent liquid fuel sprays were investigated. The models considered were the infinite-diffusion, diffusion-limit, and effective-conductivity models. A numerical solution for the models was developed and implemented in the KIVA-II computer code. Low temperature and relatively high temperature numerical studies were conducted. The low temperature computations were compared with existing experimental data. The comparisons showed that while the infinite-diffusion and diffusion-limit models respectively overpredicted and underpredicted the fuel vapor peak concentration and distribution in the combustor, the effective-conductivity model gave results that were in better agreement with measurements. A limited study for the high temperature case was performed due to lack of experimental data and predictions using the three models were compared with each other.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen


    Exportieren, teilen und zitieren



    Titel :

    Effects of detailed droplet heating models on turbulent sprays vaporization behavior


    Beteiligte:
    Mawid, M. A. (Autor:in)

    Kongress:

    AIAA, SAE, ASME, and ASEE, Joint Propulsion Conference and Exhibit ; 1993 ; Monterey, CA, United States


    Erscheinungsdatum :

    1993-06-01


    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Keine Angabe


    Sprache :

    Englisch