A parameter identification algorithm for nonlinear systems is presented. It is based on smoothing test data with successively improved sets of model parameters. The smoothing, which is iterative, provides all of the information needed to compute the gradients of the smoothing performance measure with respect to the parameters. The parameters are updated using a quasi-Newton procedure, until convergence is achieved. The advantage of this algorithm over standard maximum likelihood identification algorithms is the computational savings in calculating the gradient. This algorithm was used for flight-test data consistency checks based on a nonlinear model of aircraft kinematics. Measurement biases and scale factors were identified. The advantages of the presented algorithm and model are discussed.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen


    Exportieren, teilen und zitieren



    Titel :

    Nonlinear smoothing identification algorithm with application to data consistency checks


    Beteiligte:
    Idan, M. (Autor:in)


    Erscheinungsdatum :

    01.04.1993



    Medientyp :

    Sonstige


    Format :

    Keine Angabe


    Sprache :

    Englisch


    Schlagwörter :