In this paper, we address the feasibility of partitioning rule-based systems into a number of meaningful units to enhance the comprehensibility, maintainability and reliability of expert systems software. Preliminary results have shown that no single structuring principle or abstraction hierarchy is sufficient to understand complex knowledge bases. We therefore propose the Multi View Point - Clustering Analysis (MVP-CA) methodology to provide multiple views of the same expert system. We present the results of using this approach to partition a deployed knowledge-based system that navigates the Space Shuttle's entry. We also discuss the impact of this approach on verification and validation of knowledge-based systems.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen


    Exportieren, teilen und zitieren



    Titel :

    Multi-viewpoint clustering analysis


    Beteiligte:
    Mehrotra, Mala (Autor:in) / Wild, Chris (Autor:in)


    Erscheinungsdatum :

    01.01.1993


    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Keine Angabe


    Sprache :

    Englisch


    Schlagwörter :


    The methodology of multi-viewpoint clustering analysis

    Mehrotra, Mala / Wild, Chris | AIAA | 1993


    The Methodology of Multi-ViewPoint Clustering Analysis

    Mehrotra, M. / Wild, C. / AIAA | British Library Conference Proceedings | 1993


    Viewpoint-Aware Progressive Clustering for Unsupervised Vehicle Re-Identification

    Zheng, Aihua / Sun, Xia / Li, Chenglong et al. | IEEE | 2022


    MULTI-VIEWPOINT ANGLE AERIAL PROJECTION DEVICE

    CHEN XI XUN | Europäisches Patentamt | 2024

    Freier Zugriff

    Viewpoint

    Online Contents | 2011