A computational method has been developed to treat the unsteady aerodynamic interaction between a helicopter rotor, wake, and fuselage. Two existing codes, a lifting line-prescribed wake rotor analysis and a source panel fuselage analysis, were modified and coupled to allow prediction of unsteady fuselage pressures and airloads. A prescribed displacement technique was developed to position the rotor wake about the fuselage. Also coupled into the method were optional blade dynamics or rigid blade performance analyses to set the rotor operating conditions. Sensitivity studies were performed to determine the influence of the wake and fuselage geometry on the computational results. Solutions were computed for an ellipsoidal fuselage and a four bladed rotor at several advance ratios, using both the classical helix and the generalized distorted wake model. Results are presented that describe the induced velocities, pressures, and airloads on the fuselage and the induced velocities and bound circulation at the rotor. The ability to treat arbitrary geometries was demonstrated using a simulated helicopter fuselage. Initial computations were made to simulate the geometry of an experimental rotor-fuselage interaction study performed at the Georgia Institute of Technology.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen


    Exportieren, teilen und zitieren



    Titel :

    An unsteady helicopter rotor-fuselage aerodynamic interaction analysis


    Beteiligte:
    Lorber, Peter F. (Autor:in) / Egolf, T. Alan (Autor:in)


    Erscheinungsdatum :

    1990-07-01



    Medientyp :

    Sonstige


    Format :

    Keine Angabe


    Sprache :

    Englisch


    Schlagwörter :