A preliminary study of SOAR, a general intelligent architecture for automated problem solving and learning, is presented. The underlying principles of universal subgoaling and chunking were applied to a simple, yet representative, problem in artificial intelligence. A number of problem space representations were examined and compared. It is concluded that learning is an inherent and beneficial aspect of problem solving. Additional studies are suggested in domains relevant to mission planning and to SOAR itself.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen


    Exportieren, teilen und zitieren



    Titel :

    Production system chunking in SOAR: Case studies in automated learning


    Beteiligte:
    Allen, Robert (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    01.02.1989


    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Keine Angabe


    Sprache :

    Englisch


    Schlagwörter :



    SATELLITE SERVICES SOAR

    Ropelewski, Robert | Online Contents | 1996


    Microprocessor requirements soar

    Costlow,T. | Kraftfahrwesen | 2004


    Learning in tele-autonomous systems using Soar

    Laird, John E. / Yager, Eric S. / Tuck, Christopher M. et al. | NTRS | 1989


    Dyna-Soar Bioastronautics

    Robert Y Walker | NTRS | 1962