An algorithm is presented for efficient inverse solution of Kepler's equation for hyperbolic orbits. It is shown that an expansion of Barker's equation into a bicubic polynomial provides a good approximation to obtain accurate starting values for rapid numerical solution of Kepler's equation. In the approximate equation a cubic in normalized elapsed flight time from pericenter is set equal to a cubic in a function S of eccentricity and true anomaly. The initial estimate of S to use in an iteration formula is obtained by evaluating the cubic in normalized flight time and finding in most cases the single real root of the other cubic. This initial estimate has an accuracy corresponding to values of true anomaly in error by less than 0.5 degrees generally.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen


    Exportieren, teilen und zitieren



    Titel :

    Inverse solution of Kepler's equation for hyperbolic orbits


    Beteiligte:


    Erscheinungsdatum :

    01.09.1987



    Medientyp :

    Sonstige


    Format :

    Keine Angabe


    Sprache :

    Englisch


    Schlagwörter :


    Efficient inverse solution of Kepler's equation

    Boltz, Frederick W. | NTRS | 1986




    A Non-Iterative Solution for Kepler's Equation (AAS 07-282)

    Turner, J.D. / American Astronautical Society / American Institute of Aeronautics and Astronautics | British Library Conference Proceedings | 2008