The paper reports a flow-field investigation on a 7.52-percent scale model of an advanced fighter aircraft design conducted in the NASA-Langley 16-ft Transonic Tunnel. The effects of free-stream Mach number, angle-of-attack, angle of sideslip, and various vortex control devices on the local flow values were studied. The model was tested at Mach numbers of 0.6, 0.9, and 1.2 and the angles of sideslip of 0 and +/- 5 deg; the model angle-of-attack was varied from -4 to 30 deg. Results are presented in terms of contour plots of local total pressure recovery. The dominant influence on the over-wing flow field was found to be the wing leading-edge vortex which first appears in the survey region at an angle-of-attack of 8 deg and increases in strength and influence with increasing angle-of-attack, finally dominating the entire survey region at very high angles-of-attack.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen


    Exportieren, teilen und zitieren



    Titel :

    Investigation of a delta-wing fighter model flow field at transonic speeds


    Beteiligte:
    Bare, E. Ann (Autor:in) / Reubush, David E. (Autor:in) / Haddad, Raymond (Autor:in) / Hathaway, Ross W. (Autor:in) / Compton, Mike (Autor:in)

    Erscheinungsdatum :

    01.06.1987


    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Keine Angabe


    Sprache :

    Englisch


    Schlagwörter :


    Investigation of a delta-wing fighter model flow field at transonic speeds

    BARE, E. / REUBUSH, DAVID / HADDAD, RAYMOND et al. | AIAA | 1987


    Euler solutions for transonic flow past a fighter wing

    SANKAR, L. N. / MALONE, J. B. / SCHUSTER, D. | AIAA | 1987



    Unsteady aerodynamic modeling of a fighter wing in transonic flow

    MALONE, J. B. / SANKAR, L. N. / SOTOMAYER, W. A. | AIAA | 1986