The highly maneuverable aircraft technology (HiMAT) program explored the various and complex interactions of advanced technologies, such as aeroelastic tailoring, close-coupled canard, and relaxed static stability. A 0.44-subscale remotely piloted research vehicle (RPRV) of a hypothetical fighter airplane was designed and flight-tested to determine the effects of these interactions and to define the design techniques appropriate for advanced fighter technologies. Flexibility and high maneuverability were provided by flight control laws implemented in ground-based computers and telemetered to the vehicle control system during flight tests. The high quality of the flight-measured data and their close correlation with the analytical design modeling proved that the RPRV is a viable and cost-effective tool for developing aerodynamic, structure, and control law requirements for highly maneuverable fighter airplanes of the future.
Wright Brothers Lectureship in Aeronautics: Experience with HiMAT remotely piloted research vehicle - An alternate flight test approach
01.10.1986
Aufsatz (Konferenz)
Keine Angabe
Englisch