Supercritical technology has been applied to the design of a forward-swept-wing fighter configuration, and an assessment has been made of the relative performance of forward versus aft sweep. The wing and canard for this forward-swept wing configuration were designed for transonic maneuver by the use of a transonic computational analysis method and a transonic design procedure. The computational method calculates the transonic flow over a canard-wing-fuselage combination so that the strong transonic induced-flow effects of the canard on the wing are taken into account. A model of this configuration was constructed and was tested in the Langley 16-Foot Transonic Tunnel. The transonic theory gave a reasonably good estimate of the wing pressure distributions at transonic maneuver conditions. Comparison of this configuration with an equivalent aft-swept wing configuration showed that, at a Mach number of 0.9 and a lift coefficient of 0.9, the two configurations have essentially the same drag. This forward-swept wing configuration was also found to have very good maneuver performance relative to the Rockwell International HiMAT highly-maneuverable aircraft configuration.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen


    Exportieren, teilen und zitieren



    Titel :

    A forward-swept wing configuration designed for high maneuverability by use of three-dimensional transonic theory


    Beteiligte:
    Mann, M. J. (Autor:in) / Mercer, C. E. (Autor:in)

    Erscheinungsdatum :

    1985-10-01


    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Keine Angabe


    Sprache :

    Englisch