A description of the High Resolution Accelerometer Package (HiRAP) experiment, designed to measure rarefied flow aerodynamic accelerations, is given. The ground test calibration factors, as well as post-flight data processing techniques to extract aerodynamic accelerations, are discussed and applied to the recorded reentry data of the recent STS-6 Shuttle Orbiter flight. The ratio of the measured normal-to-axial aerodynamic accelerations during reentry is used to obtain the first flight measurement of the lift-to-drag ratio (L/D) of a winged entry vehicle in the rarefied flow flight regime. The preliminary result for the free-molecule flow L/D is 0.10 + or - 0.03. The initial flight results on L/D are compared with current predictions which are based upon theoretical and empirical considerations. The measured free-molecule flow L/D value is higher than predicted by a factor of about three, indicating that surface reflection is not completely diffuse as currently assumed. In the rarefied flow transition regime, the Shuttle data book-bridging formula fits the flight data adequately. Upper altitude density profiles are also deduced from the measurements and presented. The density profiles show a wave phenomena with amplitude of about 60 percent, relative to a standard model.
The Shuttle Orbiter high resolution accelerometer package experiment - Preliminary flight results
01.01.1984
Aufsatz (Konferenz)
Keine Angabe
Englisch