The goal of 100 kilowatts (kW) of directed energy from an airborne tactical platform has proved challenging due to the size and weight of most of the options that have been considered. However, recent advances in Free-Electron Lasers appear to offer a solution along with significant tactical advantages: a nearly unlimited magazine, time structures for periods from milliseconds to hours, radar like functionality, and the choice of the wavelength of light that best meets mission requirements. For an Airborne Tactical Free-Electron Laser (ATFEL) on a platforms such as a Lockheed C-130J-30 and airships, the two most challenging requirements, weight and size, can be met by generating the light at a higher harmonic, aggressively managing magnet weights, managing cryogenic heat loads using recent SRF R&D results, and using FEL super compact design concepts that greatly reduce the number of components. The initial R&D roadmap for achieving an ATFEL is provided in this paper. Performing this R&D is expected to further reduce the weight, size and power requirements for the FELs the Navy is currently developing for shipboard applications, as well as providing performance enhancements for the strategic airborne MW class FELs.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen


    Exportieren, teilen und zitieren



    Titel :

    Airborne Tactical Free-Electron Laser


    Beteiligte:
    R. Whitney (Autor:in) / G. Neil (Autor:in)

    Erscheinungsdatum :

    2007


    Format / Umfang :

    13 pages


    Medientyp :

    Report


    Format :

    Keine Angabe


    Sprache :

    Englisch




    Threat Assessment in Tactical Airborne Environments

    Nguyen, X. T. / International Society of Information Fusion / Institute of Electrical and Electronics Engineers | British Library Conference Proceedings | 2002





    Airborne Tactical Intent-Based Conflict Resolution Capability

    Wing, David J. / Vivona, Robert A. / Roscoe, David A. | NTRS | 2009