Detecting water hazards is a significant challenge to unmanned ground vehicle autonomous off-road navigation. This paper focuses on detecting the presence of water during the daytime using color cameras. A multi-cue approach is taken. Evidence of the presence of water is generated from color, texture, and the detection of reflections in stereo range data. A rule base for fusing water cues was developed by evaluating detection results from an extensive archive of data collection imagery containing water. This software has been implemented into a run-time passive perception subsystem and tested thus far under Linux on a Pentium based processor.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen


    Exportieren, teilen und zitieren



    Titel :

    Daytime Water Detection by Fusing Multiple Cues for Autonomous Off-Road Navigation


    Beteiligte:
    A. L. Rankin (Autor:in) / L. H. Matthies (Autor:in) / A. Huertas (Autor:in)

    Erscheinungsdatum :

    2005


    Format / Umfang :

    14 pages


    Medientyp :

    Report


    Format :

    Keine Angabe


    Sprache :

    Englisch




    Daytime Water Detection by Fusing Multiple Cues for Autonomous Off-Road Navigation

    A. L. Rankin / L. H. Matthies / A. Huertas | NTIS | 2004


    Daytime Water Detection by Fusing Multiple Cues for Autonomous Off-Road Navigation

    Rankin, A. L. / Matthies, L. H. / Huertas, A. | NTRS | 2004



    Autonomous Vehicles Traversability Mapping Fusing Semantic–Geometric in Off-Road Navigation

    Bo Zhang / Weili Chen / Chaoming Xu et al. | DOAJ | 2024

    Freier Zugriff

    Night Time Vehicle Detection and Tracking by Fusing Sensor Cues from Autonomous Vehicles

    Zhang, Xinxiang / Story, Brett / Rajan, Dinesh | IEEE | 2020