The automated recognition of cartographic symbols such as dual cased roads and railroads would significantly reduce the manual labor involved in generating digital cartographic data bases. The effort described in this report was successful in detection 96.5% of the railroad symbol components. There were only 1.5% false taggings. 98.3% of the dual cased roads were tagged with only .7% false taggings. Goodyear Aerospace Corporation (GAC) believes that minor modifications to the algorithms would produce near perfect results for both features. Because of the success of this effort, GAC feels that the project should be continued to allow evaluation on existing map sheet data and expansion of the effort to additional cartographic symbols. (Author)


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen


    Exportieren, teilen und zitieren



    Titel :

    Feature Tagging


    Beteiligte:
    G. A. Biecker (Autor:in) / J. L. Potter (Autor:in) / D. S. Paden (Autor:in)

    Erscheinungsdatum :

    1980


    Format / Umfang :

    32 pages


    Medientyp :

    Report


    Format :

    Keine Angabe


    Sprache :

    Englisch




    Main Entrance Tagging based on Intrinsic and Extrinsic Feature Extracted from OSM

    Hu, Xuke / Fan, Hongchao / Noskov, Alexey et al. | Deutsches Zentrum für Luft- und Raumfahrt (DLR) | 2019

    Freier Zugriff

    VIRTUAL FLIGHT TAGGING

    MESSIAH HAIDI | Europäisches Patentamt | 2022

    Freier Zugriff

    Hydroxyl Tagging Velocimetry

    Pitz, R. / American Institute of Aeronautics and Astronautics | British Library Conference Proceedings | 2008


    ROAD CONDITION TAGGING

    WITRIOL DANIEL / CHENG DENNIS | Europäisches Patentamt | 2025

    Freier Zugriff

    Hydroxyl Tagging Velocimetry

    Pitz, Robert | AIAA | 2008