Conventional airliners use two to four engines in a Cayley-type arrangement to provide thrust, and the thrust from these engines is typically concentrated right behind the engine. Distributed propulsion is the idea of redistributing the thrust across most, or all, of the wingspan of an aircraft. This can be accomplished by using several large engines and using a duct to spread out the exhaust flow to form a jet-wing or by using many small engines spaced along the span of the wing. Jet-wing distributed propulsion was originally suggested by Kuchemann as a way to improve propulsive efficiency. In addition, one can envision a jet-wing with deflected jets replacing flaps and slats and the associated noise. The purpose of this study was to assess the performance benefits of jet-wing distributed propulsion. The Reynolds-averaged, finite-volume, Navier-Stokes code GASP was used to perform parametric computational fluid dynamics (CFD) analyses on two-dimensional jet-wing models. The jet-wing was modeled by applying velocity and density boundary conditions on the trailing edges of blunt trailing edge airfoils such that the vehicle was self-propelled.
Numerical Assessment of the Performance of Jet-Wing Distributed Propulsion on Blended-Wing-Body Aircraft
2003
135 pages
Report
Keine Angabe
Englisch
Aerodynamic Performance of Blended Wing Body Aircraft with Distributed Propulsion
British Library Conference Proceedings | 2014
|Aerodynamic Performance of Blended Wing Body Aircraft with Distributed Propulsion
Trans Tech Publications | 2014
|